Log in to save to my catalogue

Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals...

Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2821743266

Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review

About this item

Full title

Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review

Publisher

London: Springer London

Journal title

Neural computing & applications, 2023-07, Vol.35 (20), p.14681-14722

Language

English

Formats

Publication information

Publisher

London: Springer London

More information

Scope and Contents

Contents

The brain–computer interface (BCI) is an emerging technology that has the potential to revolutionize the world, with numerous applications ranging from healthcare to human augmentation. Electroencephalogram (EEG) motor imagery (MI) is among the most common BCI paradigms that have been used extensively in smart healthcare applications such as post-s...

Alternative Titles

Full title

Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2821743266

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2821743266

Other Identifiers

ISSN

0941-0643

E-ISSN

1433-3058

DOI

10.1007/s00521-021-06352-5

How to access this item