Log in to save to my catalogue

Learning Interpretable Heuristics for WalkSAT

Learning Interpretable Heuristics for WalkSAT

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2835673532

Learning Interpretable Heuristics for WalkSAT

About this item

Full title

Learning Interpretable Heuristics for WalkSAT

Publisher

Ithaca: Cornell University Library, arXiv.org

Journal title

arXiv.org, 2023-07

Language

English

Formats

Publication information

Publisher

Ithaca: Cornell University Library, arXiv.org

Subjects

More information

Scope and Contents

Contents

Local search algorithms are well-known methods for solving large, hard instances of the satisfiability problem (SAT). The performance of these algorithms crucially depends on heuristics for setting noise parameters and scoring variables. The optimal setting for these heuristics varies for different instance distributions. In this paper, we present...

Alternative Titles

Full title

Learning Interpretable Heuristics for WalkSAT

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2835673532

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2835673532

Other Identifiers

E-ISSN

2331-8422

How to access this item