AutoSourceID-Classifier. Star-Galaxy Classification using a Convolutional Neural Network with Spatia...
AutoSourceID-Classifier. Star-Galaxy Classification using a Convolutional Neural Network with Spatial Information
About this item
Full title
Author / Creator
Stoppa, F , Bhattacharyya, S , Ruiz de Austri, R , Vreeswijk, P , Caron, S , Zaharijas, G , Bloemen, S , Principe, G , Malyshev, D , Vodeb, V , Groot, P J , Cator, E and Nelemans, G
Publisher
Ithaca: Cornell University Library, arXiv.org
Journal title
Language
English
Formats
Publication information
Publisher
Ithaca: Cornell University Library, arXiv.org
Subjects
More information
Scope and Contents
Contents
Aims. Traditional star-galaxy classification techniques often rely on feature estimation from catalogues, a process susceptible to introducing inaccuracies, thereby potentially jeopardizing the classification's reliability. Certain galaxies, especially those not manifesting as extended sources, can be misclassified when their shape parameters and f...
Alternative Titles
Full title
AutoSourceID-Classifier. Star-Galaxy Classification using a Convolutional Neural Network with Spatial Information
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_journals_2843254770
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2843254770
Other Identifiers
E-ISSN
2331-8422
DOI
10.48550/arxiv.2307.14456