Log in to save to my catalogue

From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction

From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2882108461

From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction

About this item

Full title

From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction

Publisher

Ithaca: Cornell University Library, arXiv.org

Journal title

arXiv.org, 2024-05

Language

English

Formats

Publication information

Publisher

Ithaca: Cornell University Library, arXiv.org

More information

Scope and Contents

Contents

Foundation models have been transformational in machine learning fields such as natural language processing and computer vision. Similar success in atomic property prediction has been limited due to the challenges of training effective models across multiple chemical domains. To address this, we introduce Joint Multi-domain Pre-training (JMP), a supervised pre-training strategy that simultaneously trains on multiple datasets from different chemical domains, treating each dataset as a unique pre-training task within a multi-task framework. Our combined training dataset consists of \(\sim\)120M systems from OC20, OC22, ANI-1x, and Transition-1x. We evaluate performance and generalization by fine-tuning over a diverse set of downstream tasks and datasets including: QM9, rMD17, MatBench, QMOF, SPICE, and MD22. JMP demonstrates an average improvement of 59% over training from scratch, and matches or sets state-of-the-art on 34 out of 40 tasks. Our work highlights the potential of pre-training strategies that utilize diverse data to advance property prediction across chemical domains, especially for low-data tasks. Please visit https://nima.sh/jmp for further information....

Alternative Titles

Full title

From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2882108461

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2882108461

Other Identifiers

E-ISSN

2331-8422

How to access this item