Log in to save to my catalogue

Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear Schrö...

Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear Schrö...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2918641460

Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear Schrödinger-Helmholtz equations

About this item

Full title

Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear Schrödinger-Helmholtz equations

Author / Creator

Publisher

New York: Springer US

Journal title

Numerical algorithms, 2021-04, Vol.86 (4), p.1495-1522

Language

English

Formats

Publication information

Publisher

New York: Springer US

More information

Scope and Contents

Contents

In this paper, we establish unconditionally optimal error estimates for linearized backward Euler Galerkin finite element methods (FEMs) applied to nonlinear Schrödinger-Helmholtz equations. By using the temporal-spatial error splitting techniques, we split the error between the exact solution and the numerical solution into two parts which are cal...

Alternative Titles

Full title

Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear Schrödinger-Helmholtz equations

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2918641460

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2918641460

Other Identifiers

ISSN

1017-1398

E-ISSN

1572-9265

DOI

10.1007/s11075-020-00942-5

How to access this item