Predicting Individual Tree Mortality of Larix gmelinii var. Principis-rupprechtii in Temperate Fores...
Predicting Individual Tree Mortality of Larix gmelinii var. Principis-rupprechtii in Temperate Forests Using Machine Learning Methods
About this item
Full title
Author / Creator
Publisher
Basel: MDPI AG
Journal title
Language
English
Formats
Publication information
Publisher
Basel: MDPI AG
Subjects
More information
Scope and Contents
Contents
Accurate prediction of individual tree mortality is essential for informed decision making in forestry. In this study, we proposed machine learning models to forecast individual tree mortality within the temperate Larix gmelinii var. principis-rupprechtii forests in Northern China. Eight distinct machine learning techniques including random forest,...
Alternative Titles
Full title
Predicting Individual Tree Mortality of Larix gmelinii var. Principis-rupprechtii in Temperate Forests Using Machine Learning Methods
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_journals_2930970453
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2930970453
Other Identifiers
ISSN
1999-4907
E-ISSN
1999-4907
DOI
10.3390/f15020374