Log in to save to my catalogue

Predicting Individual Tree Mortality of Larix gmelinii var. Principis-rupprechtii in Temperate Fores...

Predicting Individual Tree Mortality of Larix gmelinii var. Principis-rupprechtii in Temperate Fores...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2930970453

Predicting Individual Tree Mortality of Larix gmelinii var. Principis-rupprechtii in Temperate Forests Using Machine Learning Methods

About this item

Full title

Predicting Individual Tree Mortality of Larix gmelinii var. Principis-rupprechtii in Temperate Forests Using Machine Learning Methods

Publisher

Basel: MDPI AG

Journal title

Forests, 2024-02, Vol.15 (2), p.374

Language

English

Formats

Publication information

Publisher

Basel: MDPI AG

More information

Scope and Contents

Contents

Accurate prediction of individual tree mortality is essential for informed decision making in forestry. In this study, we proposed machine learning models to forecast individual tree mortality within the temperate Larix gmelinii var. principis-rupprechtii forests in Northern China. Eight distinct machine learning techniques including random forest,...

Alternative Titles

Full title

Predicting Individual Tree Mortality of Larix gmelinii var. Principis-rupprechtii in Temperate Forests Using Machine Learning Methods

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2930970453

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2930970453

Other Identifiers

ISSN

1999-4907

E-ISSN

1999-4907

DOI

10.3390/f15020374

How to access this item