Log in to save to my catalogue

Universal Lower Bounds and Optimal Rates: Achieving Minimax Clustering Error in Sub-Exponential Mixt...

Universal Lower Bounds and Optimal Rates: Achieving Minimax Clustering Error in Sub-Exponential Mixt...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2931849913

Universal Lower Bounds and Optimal Rates: Achieving Minimax Clustering Error in Sub-Exponential Mixture Models

About this item

Full title

Universal Lower Bounds and Optimal Rates: Achieving Minimax Clustering Error in Sub-Exponential Mixture Models

Publisher

Ithaca: Cornell University Library, arXiv.org

Journal title

arXiv.org, 2024-07

Language

English

Formats

Publication information

Publisher

Ithaca: Cornell University Library, arXiv.org

More information

Scope and Contents

Contents

Clustering is a pivotal challenge in unsupervised machine learning and is often investigated through the lens of mixture models. The optimal error rate for recovering cluster labels in Gaussian and sub-Gaussian mixture models involves ad hoc signal-to-noise ratios. Simple iterative algorithms, such as Lloyd's algorithm, attain this optimal error ra...

Alternative Titles

Full title

Universal Lower Bounds and Optimal Rates: Achieving Minimax Clustering Error in Sub-Exponential Mixture Models

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2931849913

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2931849913

Other Identifiers

E-ISSN

2331-8422

How to access this item