Log in to save to my catalogue

Proof of some conjectural congruences involving Apéry and Apéry-like numbers

Proof of some conjectural congruences involving Apéry and Apéry-like numbers

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_3055291033

Proof of some conjectural congruences involving Apéry and Apéry-like numbers

About this item

Full title

Proof of some conjectural congruences involving Apéry and Apéry-like numbers

Author / Creator

Publisher

Cambridge, UK: Cambridge University Press

Journal title

Proceedings of the Edinburgh Mathematical Society, 2024-05, Vol.67 (2), p.508-527

Language

English

Formats

Publication information

Publisher

Cambridge, UK: Cambridge University Press

Subjects

Subjects and topics

More information

Scope and Contents

Contents

In this paper, we mainly prove the following conjectures of Sun [16]: Let p > 3 be a prime. Then
\begin{align*}
&A_{2p}\equiv A_2-\frac{1648}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\
&A_{2p-1}\equiv A_1+\frac{16p^3}3B_{p-3}\ ({\rm{mod}}\ p^4),\\
&A_{3p}\equiv A_3-36738p^3B_{p-3}\ ({\rm{mod}}\ p^4),
\end{align*} where $A_n=\sum_{k=0}^n\binom{...

Alternative Titles

Full title

Proof of some conjectural congruences involving Apéry and Apéry-like numbers

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_3055291033

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_3055291033

Other Identifiers

ISSN

0013-0915

E-ISSN

1464-3839

DOI

10.1017/S0013091524000075

How to access this item