Log in to save to my catalogue

Aspects of convergence of random walks on finite volume homogeneous spaces

Aspects of convergence of random walks on finite volume homogeneous spaces

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_3072254349

Aspects of convergence of random walks on finite volume homogeneous spaces

About this item

Full title

Aspects of convergence of random walks on finite volume homogeneous spaces

Author / Creator

Publisher

Abingdon: Taylor & Francis

Journal title

Dynamical systems (London, England), 2024-04, Vol.39 (2), p.243-267

Language

English

Formats

Publication information

Publisher

Abingdon: Taylor & Francis

More information

Scope and Contents

Contents

We investigate three aspects of weak* convergence of the n-step distributions of random walks on finite volume homogeneous spaces
$ G/\Gamma $
G
/
Γ
of semisimple real Lie groups. First, we look into the obvious obstruction to the upgrade from Cesàro to non-averaged convergence: periodicity. We give examples where it occurs and condi...

Alternative Titles

Full title

Aspects of convergence of random walks on finite volume homogeneous spaces

Authors, Artists and Contributors

Author / Creator

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_3072254349

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_3072254349

Other Identifiers

ISSN

1468-9367

E-ISSN

1468-9375

DOI

10.1080/14689367.2023.2271407

How to access this item