A Blow-Up Criterion for the Nonhomogeneous Incompressible Navier--Stokes Equations
A Blow-Up Criterion for the Nonhomogeneous Incompressible Navier--Stokes Equations
About this item
Full title
Author / Creator
Publisher
Philadelphia, PA: Society for Industrial and Applied Mathematics
Journal title
Language
English
Formats
Publication information
Publisher
Philadelphia, PA: Society for Industrial and Applied Mathematics
Subjects
More information
Scope and Contents
Contents
Let $(\rho , u)$ be a strong or smooth solution of the nonhomogeneous incompressible Navier--Stokes equations in $(0, T^*) \times \Omega$, where $T^*$ is a finite positive time and $\Omega$ is a bounded domain in $\mathbf{R}^3$ with smooth boundary or the whole space $\mathbf{R}^3$. We show that if $(\rho , u)$ blows up at $T^* $, then $ \int_0^{T^...
Alternative Titles
Full title
A Blow-Up Criterion for the Nonhomogeneous Incompressible Navier--Stokes Equations
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_journals_923938127
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_923938127
Other Identifiers
ISSN
0036-1410
E-ISSN
1095-7154
DOI
10.1137/S0036141004442197