Log in to save to my catalogue

Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal im...

Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal im...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_miscellaneous_2465436919

Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging

About this item

Full title

Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging

Publisher

BMA House, Tavistock Square, London, WC1H 9JR: BMJ Publishing Group Ltd

Journal title

British journal of ophthalmology, 2022-03, Vol.106 (3), p.388-395

Language

English

Formats

Publication information

Publisher

BMA House, Tavistock Square, London, WC1H 9JR: BMJ Publishing Group Ltd

More information

Scope and Contents

Contents

Background/AimsTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer’s disease (AD) using a combination of multimodal retinal images and patient data.MethodsColour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and u...

Alternative Titles

Full title

Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_miscellaneous_2465436919

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_miscellaneous_2465436919

Other Identifiers

ISSN

0007-1161

E-ISSN

1468-2079

DOI

10.1136/bjophthalmol-2020-317659

How to access this item