Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal im...
Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging
About this item
Full title
Author / Creator
Publisher
BMA House, Tavistock Square, London, WC1H 9JR: BMJ Publishing Group Ltd
Journal title
Language
English
Formats
Publication information
Publisher
BMA House, Tavistock Square, London, WC1H 9JR: BMJ Publishing Group Ltd
Subjects
More information
Scope and Contents
Contents
Background/AimsTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer’s disease (AD) using a combination of multimodal retinal images and patient data.MethodsColour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and u...
Alternative Titles
Full title
Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_miscellaneous_2465436919
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_miscellaneous_2465436919
Other Identifiers
ISSN
0007-1161
E-ISSN
1468-2079
DOI
10.1136/bjophthalmol-2020-317659