Log in to save to my catalogue

Characterization of Mediastinal Bulky Lymphomas with FDG-PET-Based Radiomics and Machine Learning Te...

Characterization of Mediastinal Bulky Lymphomas with FDG-PET-Based Radiomics and Machine Learning Te...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10093023

Characterization of Mediastinal Bulky Lymphomas with FDG-PET-Based Radiomics and Machine Learning Techniques

About this item

Full title

Characterization of Mediastinal Bulky Lymphomas with FDG-PET-Based Radiomics and Machine Learning Techniques

Publisher

Switzerland: MDPI AG

Journal title

Cancers, 2023-03, Vol.15 (7), p.1931

Language

English

Formats

Publication information

Publisher

Switzerland: MDPI AG

More information

Scope and Contents

Contents

This study tested the diagnostic value of 18F-FDG PET/CT (FDG-PET) volumetric and texture parameters in the histological differentiation of mediastinal bulky disease due to classical Hodgkin lymphoma (cHL), primary mediastinal B-cell lymphoma (PMBCL) and grey zone lymphoma (GZL), using machine learning techniques.
We reviewed 80 cHL, 29 PMBCL an...

Alternative Titles

Full title

Characterization of Mediastinal Bulky Lymphomas with FDG-PET-Based Radiomics and Machine Learning Techniques

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10093023

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10093023

Other Identifiers

ISSN

2072-6694

E-ISSN

2072-6694

DOI

10.3390/cancers15071931

How to access this item