Log in to save to my catalogue

Improving fine-mapping by modeling infinitesimal effects

Improving fine-mapping by modeling infinitesimal effects

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11056999

Improving fine-mapping by modeling infinitesimal effects

About this item

Full title

Improving fine-mapping by modeling infinitesimal effects

Publisher

New York: Nature Publishing Group US

Journal title

Nature genetics, 2024-01, Vol.56 (1), p.162-169

Language

English

Formats

Publication information

Publisher

New York: Nature Publishing Group US

More information

Scope and Contents

Contents

Fine-mapping aims to identify causal genetic variants for phenotypes. Bayesian fine-mapping algorithms (for example, SuSiE, FINEMAP, ABF and COJO-ABF) are widely used, but assessing posterior probability calibration remains challenging in real data, where model misspecification probably exists, and true causal variants are unknown. We introduce rep...

Alternative Titles

Full title

Improving fine-mapping by modeling infinitesimal effects

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11056999

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11056999

Other Identifiers

ISSN

1061-4036,1546-1718

E-ISSN

1546-1718

DOI

10.1038/s41588-023-01597-3

How to access this item