Materials Prediction via Classification Learning
Materials Prediction via Classification Learning
About this item
Full title
Author / Creator
Publisher
London: Nature Publishing Group UK
Journal title
Language
English
Formats
Publication information
Publisher
London: Nature Publishing Group UK
Subjects
More information
Scope and Contents
Contents
In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (
i.e.
attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid p...
Alternative Titles
Full title
Materials Prediction via Classification Learning
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4548442
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4548442
Other Identifiers
ISSN
2045-2322
E-ISSN
2045-2322
DOI
10.1038/srep13285