Log in to save to my catalogue

AUC-Maximizing Ensembles through Metalearning

AUC-Maximizing Ensembles through Metalearning

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4912128

AUC-Maximizing Ensembles through Metalearning

About this item

Full title

AUC-Maximizing Ensembles through Metalearning

Publisher

Germany: De Gruyter

Journal title

The international journal of biostatistics, 2016-05, Vol.12 (1), p.203-218

Language

English

Formats

Publication information

Publisher

Germany: De Gruyter

More information

Scope and Contents

Contents

Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in binary classification problems. An AUC-maximizing classifier can have significant advantages in cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, maximization of the AUC can be achieved by the use of an AUC-maxi...

Alternative Titles

Full title

AUC-Maximizing Ensembles through Metalearning

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4912128

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4912128

Other Identifiers

ISSN

2194-573X

E-ISSN

1557-4679

DOI

10.1515/ijb-2015-0035

How to access this item