How Effective Is Algorithm-Guided Treatment for Depressed Inpatients? Results from the Randomized Co...
How Effective Is Algorithm-Guided Treatment for Depressed Inpatients? Results from the Randomized Controlled Multicenter German Algorithm Project 3 Trial
About this item
Full title
Author / Creator
Adli, Mazda , Wiethoff, Katja , Baghai, Thomas C , Fisher, Robert , Seemüller, Florian , Laakmann, Gregor , Brieger, Peter , Cordes, Joachim , Malevani, Jaroslav , Laux, Gerd , Hauth, Iris , Möller, Hans-Jürgen , Kronmüller, Klaus-Thomas , Smolka, Michael N , Schlattmann, Peter , Berger, Maximilian , Ricken, Roland , Stamm, Thomas J , Heinz, Andreas and Bauer, Michael
Publisher
US: Oxford University Press
Journal title
Language
English
Formats
Publication information
Publisher
US: Oxford University Press
Subjects
More information
Scope and Contents
Contents
BackgroundTreatment algorithms are considered as key to improve outcomes by enhancing the quality of care. This is the first randomized controlled study to evaluate the clinical effect of algorithm-guided treatment in inpatients with major depressive disorder.MethodsInpatients, aged 18 to 70 years with major depressive disorder from 10 German psych...
Alternative Titles
Full title
How Effective Is Algorithm-Guided Treatment for Depressed Inpatients? Results from the Randomized Controlled Multicenter German Algorithm Project 3 Trial
Authors, Artists and Contributors
Author / Creator
Wiethoff, Katja
Baghai, Thomas C
Fisher, Robert
Seemüller, Florian
Laakmann, Gregor
Brieger, Peter
Cordes, Joachim
Malevani, Jaroslav
Laux, Gerd
Hauth, Iris
Möller, Hans-Jürgen
Kronmüller, Klaus-Thomas
Smolka, Michael N
Schlattmann, Peter
Berger, Maximilian
Ricken, Roland
Stamm, Thomas J
Heinz, Andreas
Bauer, Michael
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5581493
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5581493
Other Identifiers
ISSN
1461-1457
E-ISSN
1469-5111
DOI
10.1093/ijnp/pyx043