Log in to save to my catalogue

iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network

iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6690893

iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network

About this item

Full title

iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network

Publisher

London: Nature Publishing Group UK

Journal title

Scientific reports, 2019-08, Vol.9 (1), p.11591-9, Article 11591

Language

English

Formats

Publication information

Publisher

London: Nature Publishing Group UK

More information

Scope and Contents

Contents

We propose iW-Net, a deep learning model that allows for both automatic and interactive segmentation of lung nodules in computed tomography images. iW-Net is composed of two blocks: the first one provides an automatic segmentation and the second one allows to correct it by analyzing 2 points introduced by the user in the nodule’s boundary. For this...

Alternative Titles

Full title

iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6690893

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6690893

Other Identifiers

ISSN

2045-2322

E-ISSN

2045-2322

DOI

10.1038/s41598-019-48004-8

How to access this item