Log in to save to my catalogue

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7098173

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

About this item

Full title

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

Publisher

New York: Nature Publishing Group US

Journal title

Nature methods, 2020-02, Vol.17 (2), p.147-154

Language

English

Formats

Publication information

Publisher

New York: Nature Publishing Group US

More information

Scope and Contents

Contents

We present a systematic evaluation of state-of-the-art algorithms for inferring gene regulatory networks from single-cell transcriptional data. As the ground truth for assessing accuracy, we use synthetic networks with predictable trajectories, literature-curated Boolean models and diverse transcriptional regulatory networks. We develop a strategy...

Alternative Titles

Full title

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7098173

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7098173

Other Identifiers

ISSN

1548-7091

E-ISSN

1548-7105

DOI

10.1038/s41592-019-0690-6

How to access this item