Predicting risk for Alcohol Use Disorder using longitudinal data with multimodal biomarkers and fami...
Predicting risk for Alcohol Use Disorder using longitudinal data with multimodal biomarkers and family history: a machine learning study
About this item
Full title
Author / Creator
Kinreich, Sivan , Meyers, Jacquelyn L. , Maron-Katz, Adi , Kamarajan, Chella , Pandey, Ashwini K. , Chorlian, David B. , Zhang, Jian , Pandey, Gayathri , Subbie-Saenz de Viteri, Stacey , Pitti, Dan , Anokhin, Andrey P. , Bauer, Lance , Hesselbrock, Victor , Schuckit, Marc A. , Edenberg, Howard J. and Porjesz, Bernice
Publisher
London: Nature Publishing Group UK
Journal title
Language
English
Formats
Publication information
Publisher
London: Nature Publishing Group UK
Subjects
More information
Scope and Contents
Contents
Predictive models have succeeded in distinguishing between individuals with Alcohol use Disorder (AUD) and controls. However, predictive models identifying who is prone to develop AUD and the biomarkers indicating a predisposition to AUD are still unclear. Our sample (
n
= 656) included offspring and non-offspring of European American (EA) a...
Alternative Titles
Full title
Predicting risk for Alcohol Use Disorder using longitudinal data with multimodal biomarkers and family history: a machine learning study
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7138692
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7138692
Other Identifiers
ISSN
1359-4184,1476-5578
E-ISSN
1476-5578
DOI
10.1038/s41380-019-0534-x