Metabolite discovery through global annotation of untargeted metabolomics data
Metabolite discovery through global annotation of untargeted metabolomics data
About this item
Full title
Author / Creator
Chen, Li , Lu, Wenyun , Wang, Lin , Xing, Xi , Chen, Ziyang , Teng, Xin , Zeng, Xianfeng , Muscarella, Antonio D. , Shen, Yihui , Cowan, Alexis , McReynolds, Melanie R. , Kennedy, Brandon J. , Lato, Ashley M. , Campagna, Shawn R. , Singh, Mona , Rabinowitz, Joshua D. and CABBI, Urbana, IL (United States)
Publisher
New York: Nature Publishing Group US
Journal title
Language
English
Formats
Publication information
Publisher
New York: Nature Publishing Group US
Subjects
More information
Scope and Contents
Contents
Liquid chromatography–high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion...
Alternative Titles
Full title
Metabolite discovery through global annotation of untargeted metabolomics data
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8733904
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8733904
Other Identifiers
ISSN
1548-7091,1548-7105
E-ISSN
1548-7105
DOI
10.1038/s41592-021-01303-3