Log in to save to my catalogue

SyConn2: dense synaptic connectivity inference for volume electron microscopy

SyConn2: dense synaptic connectivity inference for volume electron microscopy

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636020

SyConn2: dense synaptic connectivity inference for volume electron microscopy

About this item

Full title

SyConn2: dense synaptic connectivity inference for volume electron microscopy

Publisher

New York: Nature Publishing Group US

Journal title

Nature methods, 2022-11, Vol.19 (11), p.1367-1370

Language

English

Formats

Publication information

Publisher

New York: Nature Publishing Group US

More information

Scope and Contents

Contents

The ability to acquire ever larger datasets of brain tissue using volume electron microscopy leads to an increasing demand for the automated extraction of connectomic information. We introduce SyConn2, an open-source connectome analysis toolkit, which works with both on-site high-performance compute environments and rentable cloud computing cluster...

Alternative Titles

Full title

SyConn2: dense synaptic connectivity inference for volume electron microscopy

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636020

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636020

Other Identifiers

ISSN

1548-7091,1548-7105

E-ISSN

1548-7105

DOI

10.1038/s41592-022-01624-x

How to access this item