SyConn2: dense synaptic connectivity inference for volume electron microscopy
SyConn2: dense synaptic connectivity inference for volume electron microscopy
About this item
Full title
Author / Creator
Publisher
New York: Nature Publishing Group US
Journal title
Language
English
Formats
Publication information
Publisher
New York: Nature Publishing Group US
Subjects
More information
Scope and Contents
Contents
The ability to acquire ever larger datasets of brain tissue using volume electron microscopy leads to an increasing demand for the automated extraction of connectomic information. We introduce SyConn2, an open-source connectome analysis toolkit, which works with both on-site high-performance compute environments and rentable cloud computing cluster...
Alternative Titles
Full title
SyConn2: dense synaptic connectivity inference for volume electron microscopy
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636020
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636020
Other Identifiers
ISSN
1548-7091,1548-7105
E-ISSN
1548-7105
DOI
10.1038/s41592-022-01624-x