Log in to save to my catalogue

Embryo classification beyond pregnancy: early prediction of first trimester miscarriage using machin...

Embryo classification beyond pregnancy: early prediction of first trimester miscarriage using machin...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9935804

Embryo classification beyond pregnancy: early prediction of first trimester miscarriage using machine learning

About this item

Full title

Embryo classification beyond pregnancy: early prediction of first trimester miscarriage using machine learning

Publisher

New York: Springer US

Journal title

Journal of assisted reproduction and genetics, 2023-02, Vol.40 (2), p.309-322

Language

English

Formats

Publication information

Publisher

New York: Springer US

More information

Scope and Contents

Contents

Purpose
First trimester miscarriage is a major concern in IVF-ET treatments, accounting for one out of nine clinical pregnancies and for up to one out of three recognized pregnancies. To develop a machine learning classifier for predicting the risk of cleavage-stage embryos to undergo first trimester miscarriage based on time-lapse images of pre...

Alternative Titles

Full title

Embryo classification beyond pregnancy: early prediction of first trimester miscarriage using machine learning

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9935804

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9935804

Other Identifiers

ISSN

1058-0468,1573-7330

E-ISSN

1573-7330

DOI

10.1007/s10815-022-02619-5

How to access this item