Log in to save to my catalogue

基于粒子群优化小波神经网络模型的春玉米生育阶段干旱预测

基于粒子群优化小波神经网络模型的春玉米生育阶段干旱预测

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_wanfang_journals_ggps202103017

基于粒子群优化小波神经网络模型的春玉米生育阶段干旱预测

About this item

Full title

基于粒子群优化小波神经网络模型的春玉米生育阶段干旱预测

Publisher

Xinxiang City: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage

Journal title

Guanʻgai paishui xuebao, 2021-03, Vol.40 (3), p.125-133

Language

Formats

Publication information

Publisher

Xinxiang City: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage

More information

Scope and Contents

Contents

【目的】为更好地开展区域性作物生长季气候干旱预测,指导春玉米高效节水补灌生产。【方法】采用皮尔逊相关系数方法选取了与干旱指数最相关的因子,利用阜新市阜蒙县1965—2019年逐日气象数据,探索建立了粒子群算法优化的小波神经网络模型(PSO-WNN),将春玉米不同生育阶段的水分亏缺指数结果进行对比验证模型精度,并利用模型模拟预测未来5 a干旱发生情况。【结果】通过模型验证,春玉米5个生育阶段(播种—出苗阶段、出苗—拔节阶段、拔节—抽雄阶段、抽雄—乳熟阶段、乳熟—成熟阶段)的均方根误差(RMSE)分别为0.041 9、0.017 4、0.048 1、0.029 7、0.042 1,决定系数R2分别为0.840 2、0.985 3、0.899 0、0.957 5、0.917 7,且预测结果与实际干...

Alternative Titles

Full title

基于粒子群优化小波神经网络模型的春玉米生育阶段干旱预测

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_wanfang_journals_ggps202103017

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_wanfang_journals_ggps202103017

Other Identifiers

ISSN

1672-3317

DOI

10.13522/j.cnki.ggps.2020531

How to access this item