基于粒子群优化小波神经网络模型的春玉米生育阶段干旱预测
基于粒子群优化小波神经网络模型的春玉米生育阶段干旱预测
About this item
Full title
Author / Creator
CAO Xiujia , GU Jian , MA Ningning , LIU, Yongqi , WANG, Zihao and YIN Guanghua
Publisher
Xinxiang City: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
Journal title
Language
Formats
Publication information
Publisher
Xinxiang City: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
Subjects
More information
Scope and Contents
Contents
【目的】为更好地开展区域性作物生长季气候干旱预测,指导春玉米高效节水补灌生产。【方法】采用皮尔逊相关系数方法选取了与干旱指数最相关的因子,利用阜新市阜蒙县1965—2019年逐日气象数据,探索建立了粒子群算法优化的小波神经网络模型(PSO-WNN),将春玉米不同生育阶段的水分亏缺指数结果进行对比验证模型精度,并利用模型模拟预测未来5 a干旱发生情况。【结果】通过模型验证,春玉米5个生育阶段(播种—出苗阶段、出苗—拔节阶段、拔节—抽雄阶段、抽雄—乳熟阶段、乳熟—成熟阶段)的均方根误差(RMSE)分别为0.041 9、0.017 4、0.048 1、0.029 7、0.042 1,决定系数R2分别为0.840 2、0.985 3、0.899 0、0.957 5、0.917 7,且预测结果与实际干...
Alternative Titles
Full title
基于粒子群优化小波神经网络模型的春玉米生育阶段干旱预测
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_wanfang_journals_ggps202103017
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_wanfang_journals_ggps202103017
Other Identifiers
ISSN
1672-3317
DOI
10.13522/j.cnki.ggps.2020531