Vertex-wise multivariate genome-wide association study identifies 780 unique genetic loci associated...
Vertex-wise multivariate genome-wide association study identifies 780 unique genetic loci associated with cortical morphology
About this item
Full title
Author / Creator
Shadrin, Alexey A. , Kaufmann, Tobias , van der Meer, Dennis , Palmer, Clare E. , Makowski, Carolina , Loughnan, Robert , Jernigan, Terry L. , Seibert, Tyler M. , Hagler, Donald J , Smeland, Olav B. , Motazedi, Ehsan , Chu, Yunhan , Lin, Aihua , Cheng, Weiqiu , Hindley, Guy , Thompson, Wesley K. , Fan, Chun C. , Holland, Dominic , Westlye, Lars T. , Frei, Oleksandr , Andreassen, Ole A. and Dale, Anders M.
Publisher
United States: Elsevier Inc
Journal title
Language
English
Formats
Publication information
Publisher
United States: Elsevier Inc
Subjects
More information
Scope and Contents
Contents
•Genetic variants affecting one cortical region often affect other cortical regions.•Standard mass-univariate methods ignore the distributed nature of genetic effects.•Multivariate MOSTest method exploits distributed effects boosting genetic discovery.•Considering fine-grained vertex-wise measures improves genetic discovery further.•Obtained increa...
Alternative Titles
Full title
Vertex-wise multivariate genome-wide association study identifies 780 unique genetic loci associated with cortical morphology
Authors, Artists and Contributors
Author / Creator
Kaufmann, Tobias
van der Meer, Dennis
Palmer, Clare E.
Makowski, Carolina
Loughnan, Robert
Jernigan, Terry L.
Seibert, Tyler M.
Hagler, Donald J
Smeland, Olav B.
Motazedi, Ehsan
Chu, Yunhan
Lin, Aihua
Cheng, Weiqiu
Hindley, Guy
Thompson, Wesley K.
Fan, Chun C.
Holland, Dominic
Westlye, Lars T.
Frei, Oleksandr
Andreassen, Ole A.
Dale, Anders M.
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_00840c2b0f414737b79b926d62cb639e
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_00840c2b0f414737b79b926d62cb639e
Other Identifiers
ISSN
1053-8119
E-ISSN
1095-9572
DOI
10.1016/j.neuroimage.2021.118603