Proof of concept and development of a couple-based machine learning model to stratify infertile pati...
Proof of concept and development of a couple-based machine learning model to stratify infertile patients with idiopathic infertility
About this item
Full title
Author / Creator
Publisher
London: Nature Publishing Group UK
Journal title
Language
English
Formats
Publication information
Publisher
London: Nature Publishing Group UK
Subjects
More information
Scope and Contents
Contents
We aimed to develop and evaluate a machine learning model that can stratify infertile/fertile couples on the basis of their bioclinical signature helping the management of couples with unexplained infertility. Fertile and infertile couples were recruited in the ALIFERT cross-sectional case–control multicentric study between September 2009 and December 2013 (NCT01093378). The study group consisted of 97 infertile couples presenting a primary idiopathic infertility (> 12 months) from 4 French infertility centers compared with 100 fertile couples (with a spontaneously conceived child (< 2 years of age) and with time to pregnancy < 12 months) recruited from the healthy population of the areas around the infertility centers. The study group is comprised of 2 independent sets: a development set (n = 136 from 3 centers) serving to train the model and a test set (n = 61 from 1 center) used to provide an unbiased validation of the model. Our results have shown that: (i) a couple-modeling approach was more discriminant than models in which men’s and women’s parameters are considered separately; (ii) the most discriminating variables were anthropometric, or related to the metabolic and oxidative status; (iii) a refined model capable to stratify fertile vs. infertile couples with accuracy 73.8% was proposed after the variables selection (from 80 to 13). These influential factors (anthropometric, antioxidative, and metabolic signatures) are all modifiable by the couple lifestyle. The model proposed takes place in the management of couples with idiopathic infertility, for whom the decision-making tools are scarce. Prospective interventional studies are now needed to validate the model clinical use.
Trial registration: NCT01093378 ALIFERT
https://clinicaltrials.gov/ct2/show/NCT01093378?term=ALIFERT&rank=1
. Registered: March 25, 2010....
Alternative Titles
Full title
Proof of concept and development of a couple-based machine learning model to stratify infertile patients with idiopathic infertility
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_12b04de25b0a466d950058f63d06be95
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_12b04de25b0a466d950058f63d06be95
Other Identifiers
ISSN
2045-2322
E-ISSN
2045-2322
DOI
10.1038/s41598-021-03165-3