Log in to save to my catalogue

Incorporating functional annotation with bilevel continuous shrinkage for polygenic risk prediction

Incorporating functional annotation with bilevel continuous shrinkage for polygenic risk prediction

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_57b257665eb54ae0aec8ecfa97e570ae

Incorporating functional annotation with bilevel continuous shrinkage for polygenic risk prediction

About this item

Full title

Incorporating functional annotation with bilevel continuous shrinkage for polygenic risk prediction

Publisher

England: BioMed Central Ltd

Journal title

BMC bioinformatics, 2024-02, Vol.25 (1), p.65-19, Article 65

Language

English

Formats

Publication information

Publisher

England: BioMed Central Ltd

More information

Scope and Contents

Contents

Genetic variants can contribute differently to trait heritability by their functional categories, and recent studies have shown that incorporating functional annotation can improve the predictive performance of polygenic risk scores (PRSs). In addition, when only a small proportion of variants are causal variants, PRS methods that employ a Bayesian framework with shrinkage can account for such sparsity. It is possible that the annotation group level effect is also sparse. However, the number of PRS methods that incorporate both annotation information and shrinkage on effect sizes is limited. We propose a PRS method, PRSbils, which utilizes the functional annotation information with a bilevel continuous shrinkage prior to accommodate the varying genetic architectures both on the variant-specific level and on the functional annotation level.
We conducted simulation studies and investigated the predictive performance in settings with different genetic architectures. Results indicated that when there was a relatively large variability of group-wise heritability contribution, the gain in prediction performance from the proposed method was on average 8.0% higher AUC compared to the benchmark method PRS-CS. The proposed method also yielded higher predictive performance compared to PRS-CS in settings with different overlapping patterns of annotation groups and obtained on average 6.4% higher AUC. We applied PRSbils to binary and quantitative traits in three real world data sources (the UK Biobank, the Michigan Genomics Initiative (MGI), and the Korean Genome and Epidemiology Study (KoGES)), and two sources of annotations: ANNOVAR, and pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG), and demonstrated that the proposed method holds the potential for improving predictive performance by incorporating functional annotations.
By utilizing a bilevel shrinkage framework, PRSbils enables the incorporation of both overlapping and non-overlapping annotations into PRS construction to improve the performance of genetic risk prediction. The software is available at https://github.com/styvon/PRSbils ....

Alternative Titles

Full title

Incorporating functional annotation with bilevel continuous shrinkage for polygenic risk prediction

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_57b257665eb54ae0aec8ecfa97e570ae

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_57b257665eb54ae0aec8ecfa97e570ae

Other Identifiers

ISSN

1471-2105

E-ISSN

1471-2105

DOI

10.1186/s12859-024-05664-2

How to access this item