An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation...
An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset
About this item
Full title
Author / Creator
Payette, Kelly , de Dumast, Priscille , Kebiri, Hamza , Ezhov, Ivan , Paetzold, Johannes C. , Shit, Suprosanna , Iqbal, Asim , Khan, Romesa , Kottke, Raimund , Grehten, Patrice , Ji, Hui , Lanczi, Levente , Nagy, Marianna , Beresova, Monika , Nguyen, Thi Dao , Natalucci, Giancarlo , Karayannis, Theofanis , Menze, Bjoern , Bach Cuadra, Meritxell and Jakab, Andras
Publisher
London: Nature Publishing Group UK
Journal title
Language
English
Formats
Publication information
Publisher
London: Nature Publishing Group UK
Subjects
More information
Scope and Contents
Contents
It is critical to quantitatively analyse the developing human fetal brain in order to fully understand neurodevelopment in both normal fetuses and those with congenital disorders. To facilitate this analysis, automatic multi-tissue fetal brain segmentation algorithms are needed, which in turn requires open datasets of segmented fetal brains. Here we introduce a publicly available dataset of 50 manually segmented pathological and non-pathological fetal magnetic resonance brain volume reconstructions across a range of gestational ages (20 to 33 weeks) into 7 different tissue categories (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, deep grey matter, brainstem/spinal cord). In addition, we quantitatively evaluate the accuracy of several automatic multi-tissue segmentation algorithms of the developing human fetal brain. Four research groups participated, submitting a total of 10 algorithms, demonstrating the benefits the dataset for the development of automatic algorithms.
Measurement(s)
regional part of brain • T2 (Observed)-Weighted Imaging
Technology Type(s)
Image Segmentation
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.14039327...
Alternative Titles
Full title
An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset
Authors, Artists and Contributors
Author / Creator
de Dumast, Priscille
Kebiri, Hamza
Ezhov, Ivan
Paetzold, Johannes C.
Shit, Suprosanna
Iqbal, Asim
Khan, Romesa
Kottke, Raimund
Grehten, Patrice
Ji, Hui
Lanczi, Levente
Nagy, Marianna
Beresova, Monika
Nguyen, Thi Dao
Natalucci, Giancarlo
Karayannis, Theofanis
Menze, Bjoern
Bach Cuadra, Meritxell
Jakab, Andras
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_955b4c4a372743dc811da7c038c1a140
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_955b4c4a372743dc811da7c038c1a140
Other Identifiers
ISSN
2052-4463
E-ISSN
2052-4463
DOI
10.1038/s41597-021-00946-3