Log in to save to my catalogue

Predictive modeling of ALS progression: an XGBoost approach using clinical features

Predictive modeling of ALS progression: an XGBoost approach using clinical features

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_d8c2674708d54ff4a0aed70e2781d6eb

Predictive modeling of ALS progression: an XGBoost approach using clinical features

About this item

Full title

Predictive modeling of ALS progression: an XGBoost approach using clinical features

Publisher

England: BioMed Central Ltd

Journal title

BioData mining, 2024-12, Vol.17 (1), p.54-11, Article 54

Language

English

Formats

Publication information

Publisher

England: BioMed Central Ltd

More information

Scope and Contents

Contents

This research presents a predictive model aimed at estimating the progression of Amyotrophic Lateral Sclerosis (ALS) based on clinical features collected from a dataset of 50 patients. Important features included evaluations of speech, mobility, and respiratory function. We utilized an XGBoost regression model to forecast scores on the ALS Function...

Alternative Titles

Full title

Predictive modeling of ALS progression: an XGBoost approach using clinical features

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_d8c2674708d54ff4a0aed70e2781d6eb

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_d8c2674708d54ff4a0aed70e2781d6eb

Other Identifiers

ISSN

1756-0381

E-ISSN

1756-0381

DOI

10.1186/s13040-024-00399-5

How to access this item