Predictive modeling of ALS progression: an XGBoost approach using clinical features
Predictive modeling of ALS progression: an XGBoost approach using clinical features
About this item
Full title
Author / Creator
Publisher
England: BioMed Central Ltd
Journal title
Language
English
Formats
Publication information
Publisher
England: BioMed Central Ltd
Subjects
More information
Scope and Contents
Contents
This research presents a predictive model aimed at estimating the progression of Amyotrophic Lateral Sclerosis (ALS) based on clinical features collected from a dataset of 50 patients. Important features included evaluations of speech, mobility, and respiratory function. We utilized an XGBoost regression model to forecast scores on the ALS Function...
Alternative Titles
Full title
Predictive modeling of ALS progression: an XGBoost approach using clinical features
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_d8c2674708d54ff4a0aed70e2781d6eb
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_d8c2674708d54ff4a0aed70e2781d6eb
Other Identifiers
ISSN
1756-0381
E-ISSN
1756-0381
DOI
10.1186/s13040-024-00399-5