Log in to save to my catalogue

Interval non-edge-colorable bipartite graphs and multigraphs

Interval non-edge-colorable bipartite graphs and multigraphs

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2084965289

Interval non-edge-colorable bipartite graphs and multigraphs

About this item

Full title

Interval non-edge-colorable bipartite graphs and multigraphs

Publisher

Ithaca: Cornell University Library, arXiv.org

Journal title

arXiv.org, 2013-01

Language

English

Formats

Publication information

Publisher

Ithaca: Cornell University Library, arXiv.org

More information

Scope and Contents

Contents

An edge-coloring of a graph \(G\) with colors \(1,...,t\) is called an interval \(t\)-coloring if all colors are used, and the colors of edges incident to any vertex of \(G\) are distinct and form an interval of integers. In 1991 Erdős constructed a bipartite graph with 27 vertices and maximum degree 13 which has no interval coloring. Erdős's count...

Alternative Titles

Full title

Interval non-edge-colorable bipartite graphs and multigraphs

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2084965289

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2084965289

Other Identifiers

E-ISSN

2331-8422

How to access this item