Identification of Therapeutic Targets for Amyotrophic Lateral Sclerosis Using PandaOmics – An AI-Ena...
Identification of Therapeutic Targets for Amyotrophic Lateral Sclerosis Using PandaOmics – An AI-Enabled Biological Target Discovery Platform
About this item
Full title
Author / Creator
Pun, Frank W. , Liu, Bonnie Hei Man , Long, Xi , Leung, Hoi Wing , Leung, Geoffrey Ho Duen , Mewborne, Quinlan T. , Gao, Junli , Shneyderman, Anastasia , Ozerov, Ivan V. , Wang, Ju , Ren, Feng , Aliper, Alexander , Bischof, Evelyne , Izumchenko, Evgeny , Guan, Xiaoming , Zhang, Ke , Lu, Bai , Rothstein, Jeffrey D. , Cudkowicz, Merit E. and Zhavoronkov, Alex
Publisher
Lausanne: Frontiers Research Foundation
Journal title
Language
English
Formats
Publication information
Publisher
Lausanne: Frontiers Research Foundation
Subjects
More information
Scope and Contents
Contents
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with ill-defined pathogenesis, calling for urgent developments of new therapeutic regimens. Herein, we applied PandaOmics, an AI-driven target discovery platform, to analyze the expression profiles of central nervous system (CNS) samples (237 cases; 91 controls) from public datasets, and direct iPSC-derived motor neurons (diMNs) (135 cases; 31 controls) from Answer ALS. Seventeen high-confidence and eleven novel therapeutic targets were identified and will be released onto ALS.AI (
http://als.ai/
). Among the proposed targets screened in the c9ALS
Drosophila
model, we verified 8 unreported genes (
KCNB2
,
KCNS3
,
ADRA2B
,
NR3C1
,
P2RY14
,
PPP3CB
,
PTPRC
, and
RARA
) whose suppression strongly rescues eye neurodegeneration. Dysregulated pathways identified from CNS and diMN data c...
Alternative Titles
Full title
Identification of Therapeutic Targets for Amyotrophic Lateral Sclerosis Using PandaOmics – An AI-Enabled Biological Target Discovery Platform
Authors, Artists and Contributors
Author / Creator
Liu, Bonnie Hei Man
Long, Xi
Leung, Hoi Wing
Leung, Geoffrey Ho Duen
Mewborne, Quinlan T.
Gao, Junli
Shneyderman, Anastasia
Ozerov, Ivan V.
Wang, Ju
Ren, Feng
Aliper, Alexander
Bischof, Evelyne
Izumchenko, Evgeny
Guan, Xiaoming
Zhang, Ke
Lu, Bai
Rothstein, Jeffrey D.
Cudkowicz, Merit E.
Zhavoronkov, Alex
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_journals_2681630367
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2681630367
Other Identifiers
ISSN
1663-4365
E-ISSN
1663-4365
DOI
10.3389/fnagi.2022.914017