Log in to save to my catalogue

PDF: A Probability-Driven Framework for Open World 3D Point Cloud Semantic Segmentation

PDF: A Probability-Driven Framework for Open World 3D Point Cloud Semantic Segmentation

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_3030950593

PDF: A Probability-Driven Framework for Open World 3D Point Cloud Semantic Segmentation

About this item

Full title

PDF: A Probability-Driven Framework for Open World 3D Point Cloud Semantic Segmentation

Publisher

Ithaca: Cornell University Library, arXiv.org

Journal title

arXiv.org, 2024-07

Language

English

Formats

Publication information

Publisher

Ithaca: Cornell University Library, arXiv.org

More information

Scope and Contents

Contents

Existing point cloud semantic segmentation networks cannot identify unknown classes and update their knowledge, due to a closed-set and static perspective of the real world, which would induce the intelligent agent to make bad decisions. To address this problem, we propose a Probability-Driven Framework (PDF) for open world semantic segmentation th...

Alternative Titles

Full title

PDF: A Probability-Driven Framework for Open World 3D Point Cloud Semantic Segmentation

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_3030950593

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_3030950593

Other Identifiers

E-ISSN

2331-8422

How to access this item