YouTube thumbnail design recommendation systems using image-tabular multimodal data for Thai’s YouTu...
YouTube thumbnail design recommendation systems using image-tabular multimodal data for Thai’s YouTube thumbnail
About this item
Full title
Author / Creator
Publisher
Heidelberg: Springer Nature B.V
Journal title
Language
English
Formats
Publication information
Publisher
Heidelberg: Springer Nature B.V
Subjects
More information
Scope and Contents
Contents
This study analyzes YouTube thumbnails to identify key elements that distinguish different categories and attract viewers, specifically focusing on YouTubers in Thailand. Using a fine-tuned Convolutional Neural Network model named Xception, we classified images into food, IT, and travel categories with 88% accuracy. Object detection models identifi...
Alternative Titles
Full title
YouTube thumbnail design recommendation systems using image-tabular multimodal data for Thai’s YouTube thumbnail
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_journals_3101005069
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_3101005069
Other Identifiers
ISSN
1869-5450
E-ISSN
1869-5469
DOI
10.1007/s13278-024-01317-7