Classification of first-episode psychosis in a large cohort of patients using support vector machine...
Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques
About this item
Full title
Author / Creator
The GET UP Group , GET UP Group , Squarcina, Letizia , Castellani, Umberto , Bellani, Marcella , Perlini, Cinzia , Lasalvia, Antonio , Dusi, Nicola , Bonetto, Chiara , Cristofalo, Doriana , Tosato, Sarah , Rambaldelli, Gianluca , Alessandrini, Franco , Zoccatelli, Giada , Pozzi-Mucelli, Roberto , Lamonaca, Dario , Ceccato, Enrico , Pileggi, Francesca , Mazzi, Fausto , Santonastaso, Paolo , Ruggeri, Mirella and Brambilla, Paolo
Publisher
United States: Elsevier Inc
Journal title
Language
English
Formats
Publication information
Publisher
United States: Elsevier Inc
Subjects
More information
Scope and Contents
Contents
First episode psychosis (FEP) patients are of particular interest for neuroimaging investigations because of the absence of confounding effects due to medications and chronicity. Nonetheless, imaging data are prone to heterogeneity because for example of age, gender or parameter setting differences. With this work, we wanted to take into account po...
Alternative Titles
Full title
Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques
Authors, Artists and Contributors
Author / Creator
GET UP Group
Squarcina, Letizia
Castellani, Umberto
Bellani, Marcella
Perlini, Cinzia
Lasalvia, Antonio
Dusi, Nicola
Bonetto, Chiara
Cristofalo, Doriana
Tosato, Sarah
Rambaldelli, Gianluca
Alessandrini, Franco
Zoccatelli, Giada
Pozzi-Mucelli, Roberto
Lamonaca, Dario
Ceccato, Enrico
Pileggi, Francesca
Mazzi, Fausto
Santonastaso, Paolo
Ruggeri, Mirella
Brambilla, Paolo
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_miscellaneous_1826646255
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_miscellaneous_1826646255
Other Identifiers
ISSN
1053-8119
E-ISSN
1095-9572
DOI
10.1016/j.neuroimage.2015.12.007