Log in to save to my catalogue

Denoise diffusion-weighted images using higher-order singular value decomposition

Denoise diffusion-weighted images using higher-order singular value decomposition

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_miscellaneous_1889386125

Denoise diffusion-weighted images using higher-order singular value decomposition

About this item

Full title

Denoise diffusion-weighted images using higher-order singular value decomposition

Publisher

United States: Elsevier Inc

Journal title

NeuroImage (Orlando, Fla.), 2017-08, Vol.156, p.128-145

Language

English

Formats

Publication information

Publisher

United States: Elsevier Inc

More information

Scope and Contents

Contents

Noise usually affects the reliability of quantitative analysis in diffusion-weighted (DW) magnetic resonance imaging (MRI), especially at high b-values and/or high spatial resolution. Higher-order singular value decomposition (HOSVD) has recently emerged as a simple, effective, and adaptive transform to exploit sparseness within multidimensional da...

Alternative Titles

Full title

Denoise diffusion-weighted images using higher-order singular value decomposition

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_miscellaneous_1889386125

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_miscellaneous_1889386125

Other Identifiers

ISSN

1053-8119

E-ISSN

1095-9572

DOI

10.1016/j.neuroimage.2017.04.017

How to access this item