Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution...
Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution
About this item
Full title
Author / Creator
Li, Bin , Zhang, Wen , Guo, Chuang , Xu, Hao , Li, Longfei , Fang, Minghao , Hu, Yinlei , Zhang, Xinye , Yao, Xinfeng , Tang, Meifang , Liu, Ke , Zhao, Xuetong , Lin, Jun , Cheng, Linzhao , Chen, Falai , Xue, Tian and Qu, Kun
Publisher
New York: Nature Publishing Group US
Journal title
Language
English
Formats
Publication information
Publisher
New York: Nature Publishing Group US
Subjects
More information
Scope and Contents
Contents
Spatial transcriptomics approaches have substantially advanced our capacity to detect the spatial distribution of RNA transcripts in tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells in space. Addressing this need, researchers have developed integration methods to combine spatial transcriptomic data...
Alternative Titles
Full title
Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_miscellaneous_2665559942
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_miscellaneous_2665559942
Other Identifiers
ISSN
1548-7091
E-ISSN
1548-7105
DOI
10.1038/s41592-022-01480-9