Log in to save to my catalogue

HIERARCHICAL SINGULAR VALUE DECOMPOSITION OF TENSORS

HIERARCHICAL SINGULAR VALUE DECOMPOSITION OF TENSORS

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_miscellaneous_907953462

HIERARCHICAL SINGULAR VALUE DECOMPOSITION OF TENSORS

About this item

Full title

HIERARCHICAL SINGULAR VALUE DECOMPOSITION OF TENSORS

Author / Creator

Publisher

Philadelphia, PA: Society for Industrial and Applied Mathematics

Journal title

SIAM journal on matrix analysis and applications, 2010-01, Vol.31 (4), p.2029-2054

Language

English

Formats

Publication information

Publisher

Philadelphia, PA: Society for Industrial and Applied Mathematics

More information

Scope and Contents

Contents

The authors define the hierarchical singular value decomposition (SVD) for tensors of order d ≥ 2. This hierarchical SVD has properties like the matrix SVD (and collapses to the SVD in d = 2), and they prove these. In particular, one can find low rank (almost) best approximations in a hierarchical format (H-Tucker) which requires only ... parameter...

Alternative Titles

Full title

HIERARCHICAL SINGULAR VALUE DECOMPOSITION OF TENSORS

Authors, Artists and Contributors

Author / Creator

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_miscellaneous_907953462

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_miscellaneous_907953462

Other Identifiers

ISSN

0895-4798

E-ISSN

1095-7162

DOI

10.1137/090764189

How to access this item