Combinatorial epigenetic patterns as quantitative predictors of chromatin biology
Combinatorial epigenetic patterns as quantitative predictors of chromatin biology
About this item
Full title
Author / Creator
Publisher
England: BioMed Central Ltd
Journal title
Language
English
Formats
Publication information
Publisher
England: BioMed Central Ltd
Subjects
More information
Scope and Contents
Contents
Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) is the most widely used method for characterizing the epigenetic states of chromatin on a genomic scale. With the recent availability of large genome-wide data sets, often comprising several epigenetic marks, novel approaches are required to explore functionally relevant interactions between histone modifications. Computational discovery of "chromatin states" defined by such combinatorial interactions enabled descriptive annotations of genomes, but more quantitative approaches are needed to progress towards predictive models.
We propose non-negative matrix factorization (NMF) as a new unsupervised method to discover combinatorial patterns of epigenetic marks that frequently co-occur in subsets of genomic regions. We show that this small set of combinatorial "codes" can be effectively displayed and interpreted. NMF codes enable dimensionality reduction and have desirable statistical properties for regression and classification tasks. We demonstrate the utility of codes in the quantitative prediction of Pol2-binding and the discrimination between Pol2-bound promoters and enhancers. Finally, we show that specific codes can be linked to molecular pathways and targets of pluripotency genes during differentiation.
We have introduced and evaluated a new computational approach to represent combinatorial patterns of epigenetic marks as quantitative variables suitable for predictive modeling and supervised machine learning. To foster widespread adoption of this method we make it available as an open-source software-package - epicode at https://github.com/mcieslik-mctp/epicode....
Alternative Titles
Full title
Combinatorial epigenetic patterns as quantitative predictors of chromatin biology
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3922690
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3922690
Other Identifiers
ISSN
1471-2164
E-ISSN
1471-2164
DOI
10.1186/1471-2164-15-76