Log in to save to my catalogue

Weakly supervised deep learning for determining the prognostic value of 18F-FDG PET/CT in extranodal...

Weakly supervised deep learning for determining the prognostic value of 18F-FDG PET/CT in extranodal...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7896833

Weakly supervised deep learning for determining the prognostic value of 18F-FDG PET/CT in extranodal natural killer/T cell lymphoma, nasal type

About this item

Full title

Weakly supervised deep learning for determining the prognostic value of 18F-FDG PET/CT in extranodal natural killer/T cell lymphoma, nasal type

Publisher

Berlin/Heidelberg: Springer Berlin Heidelberg

Journal title

European journal of nuclear medicine and molecular imaging, 2021-09, Vol.48 (10), p.3151-3161

Language

English

Formats

Publication information

Publisher

Berlin/Heidelberg: Springer Berlin Heidelberg

More information

Scope and Contents

Contents

Purpose
To develop a weakly supervised deep learning (WSDL) method that could utilize incomplete/missing survival data to predict the prognosis of extranodal natural killer/T cell lymphoma, nasal type (ENKTL) based on pretreatment
18
F-FDG PET/CT results.
Methods
One hundred and sixty-seven patients with ENKTL who underwent pretreatm...

Alternative Titles

Full title

Weakly supervised deep learning for determining the prognostic value of 18F-FDG PET/CT in extranodal natural killer/T cell lymphoma, nasal type

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7896833

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7896833

Other Identifiers

ISSN

1619-7070

E-ISSN

1619-7089

DOI

10.1007/s00259-021-05232-3

How to access this item